yunque9/xcode/Libraries/libil2cpp/include/utils/MemoryUtils.h

174 lines
6.6 KiB
C++

#pragma once
#include <stdint.h>
#include "xxhash.h"
namespace il2cpp
{
namespace utils
{
class MemoryUtils
{
public:
IL2CPP_NO_INLINE inline static int MemoryCompareByteByByte(const uint8_t* left, const uint8_t* right, size_t size)
{
for (size_t i = 0; i < size; i++)
{
uint8_t leftItem = left[i];
uint8_t rightItem = right[i];
if (leftItem != rightItem)
{
if (leftItem < rightItem)
return -1;
return 1;
}
}
return 0;
}
inline static int MemoryCompare(const void* left, const void* right, size_t size)
{
const uint8_t* leftBytes = static_cast<const uint8_t*>(left);
const uint8_t* rightBytes = static_cast<const uint8_t*>(right);
ptrdiff_t leftUnalignedByteCount = (reinterpret_cast<intptr_t>(leftBytes + 3) & ~3) - reinterpret_cast<intptr_t>(leftBytes);
ptrdiff_t rightUnalignedByteCount = (reinterpret_cast<intptr_t>(rightBytes + 3) & ~3) - reinterpret_cast<intptr_t>(rightBytes);
// Memory is aligned differently, so the best we can do is byte by byte comparison
if (leftUnalignedByteCount != rightUnalignedByteCount)
return MemoryCompareByteByByte(leftBytes, rightBytes, size);
// Memory is aligned at same size of 4 boundaries, but the start is not at size of 4 alignment
// In this case, we will scan first unaligned number of bytes and then continue with scanning multiples of 4
if (leftUnalignedByteCount != 0)
{
int unalignedMemoryCompare = MemoryCompareByteByByte(leftBytes, rightBytes, leftUnalignedByteCount);
if (unalignedMemoryCompare != 0)
return unalignedMemoryCompare;
leftBytes += leftUnalignedByteCount;
rightBytes += leftUnalignedByteCount;
size -= leftUnalignedByteCount;
}
size_t count4 = size / 4;
for (size_t i = 0; i < count4; i++)
{
uint32_t leftItem = reinterpret_cast<const uint32_t*>(leftBytes)[i];
uint32_t rightItem = reinterpret_cast<const uint32_t*>(rightBytes)[i];
if (leftItem != rightItem)
{
if (leftItem < rightItem)
return -1;
return 1;
}
}
size_t offset = count4 * 4;
return MemoryCompareByteByByte(leftBytes + offset, rightBytes + offset, size - offset);
}
inline static void* MemorySet(void* targetMemory, int value, size_t size)
{
uint8_t* ptr = static_cast<uint8_t*>(targetMemory);
for (size_t i = 0; i != size; i++)
{
ptr[i] = static_cast<uint8_t>(value);
}
return targetMemory;
}
inline static void MemoryCopyByteByByte(uint8_t* target, const uint8_t* source, size_t size)
{
for (size_t i = 0; i < size; i++)
target[i] = source[i];
}
inline static void* MemoryCopy(void* target, const void* source, size_t size)
{
uint8_t* targetBytes = static_cast<uint8_t*>(target);
const uint8_t* sourceBytes = static_cast<const uint8_t*>(source);
ptrdiff_t targetUnalignedByteCount = (reinterpret_cast<intptr_t>(targetBytes + 3) & ~3) - reinterpret_cast<intptr_t>(targetBytes);
ptrdiff_t sourceUnalignedByteCount = (reinterpret_cast<intptr_t>(sourceBytes + 3) & ~3) - reinterpret_cast<intptr_t>(sourceBytes);
// Memory is aligned differently, so the best we can do is byte by byte copy
if (targetUnalignedByteCount != sourceUnalignedByteCount)
{
MemoryCopyByteByByte(targetBytes, sourceBytes, size);
return targetBytes;
}
// Memory is aligned at same size of 4 boundaries, but the start is not at size of 4 alignment
// In this case, we will copy first unaligned number of bytes and then continue with copying multiples of 4
if (targetUnalignedByteCount != 0)
{
MemoryCopyByteByByte(targetBytes, sourceBytes, targetUnalignedByteCount);
targetBytes += targetUnalignedByteCount;
sourceBytes += targetUnalignedByteCount;
size -= targetUnalignedByteCount;
}
size_t count4 = size / 4;
const uint32_t* source32 = reinterpret_cast<const uint32_t*>(sourceBytes);
uint32_t* target32 = reinterpret_cast<uint32_t*>(targetBytes);
for (size_t i = 0; i < count4; i++)
target32[i] = source32[i];
size_t offset = count4 * 4;
MemoryCopyByteByByte(targetBytes + offset, sourceBytes + offset, size - offset);
return target;
}
template<typename T>
static int32_t MemCmpRef(T* left, T* right)
{
return MemoryCompare(left, right, sizeof(T));
}
#if IL2CPP_TINY
template<typename T>
static int32_t MemHashRef(T* val)
{
return XXH32(val, sizeof(T), 0x8f37154b);
}
#endif
};
#define DECL_MEMCMP_NUM(typ) template<> inline int32_t MemoryUtils::MemCmpRef<typ>(typ* left, typ* right) { return (*right > *left) ? -1 : (*right < *left) ? 1 : 0; }
DECL_MEMCMP_NUM(int8_t)
DECL_MEMCMP_NUM(int16_t)
DECL_MEMCMP_NUM(int32_t)
DECL_MEMCMP_NUM(int64_t)
DECL_MEMCMP_NUM(uint8_t)
DECL_MEMCMP_NUM(uint16_t)
DECL_MEMCMP_NUM(uint32_t)
DECL_MEMCMP_NUM(uint64_t)
// don't think this will give the right result for NaNs and such
DECL_MEMCMP_NUM(float)
DECL_MEMCMP_NUM(double)
#undef DECL_MEMCMP_NUM
#define DECL_MEMHASH_NUM(typ) template<> inline int32_t MemoryUtils::MemHashRef(typ* val) { return (int32_t)(*val); }
DECL_MEMHASH_NUM(int8_t)
DECL_MEMHASH_NUM(int16_t)
DECL_MEMHASH_NUM(int32_t)
DECL_MEMHASH_NUM(uint8_t)
DECL_MEMHASH_NUM(uint16_t)
DECL_MEMHASH_NUM(uint32_t)
DECL_MEMHASH_NUM(float)
#undef DECL_MEMHASH_NUM
template<> inline int32_t MemoryUtils::MemHashRef(int64_t* val) { int64_t k = *val; return (int32_t)(k & 0xffffffff) ^ (int32_t)((k >> 32) & 0xffffffff); }
template<> inline int32_t MemoryUtils::MemHashRef(uint64_t* val) { return MemHashRef(reinterpret_cast<int64_t*>(val)); }
template<> inline int32_t MemoryUtils::MemHashRef(double* val) { return MemHashRef(reinterpret_cast<int64_t*>(val)); }
} // namespace utils
} // namespace il2cpp